Основными числовыми характеристиками двумерного распределения случайных величин являются показатели их связи: для линейной регрессии - коэффициент корреляции и корреляционный момент (ковариация); для нелинейной регрессии - корреляционное отношение [2, 44, 75].
Коэффициентом корреляции r между случайными величинами х и у называется математическое ожидание произведения их нормированных отклонений:
где Мх и Му – центры распределения величин х и у,
и
- их дисперсии. Коэффициент корреляции r может быть представлен в следующей форме:
Величина М(х-Мх)(у-Му) называется корреляционными моментом (ковариацией) – COV (x;y).
Коэффициент корреляции – величина безразмерная с пределами изменения - ± 1. При r =0 линейная связь полностью отсутствует. Знак r (+) или (-) указывает на характер связи (прямая или обратная).
Равенства | r | =1 означает наличие линейной функциональной зависимости между величинами х и у.
Несмещенными и состоятельными оценками математических ожиданий Х= Мх и У=Му служат эмпирические средние значения:
;
Несмещенными и состоятельными оценками дисперсии
и
служат эмпирические дисперсии:
Несмещенной и состоятельной оценкой корреляционного момента служит эмпирический корреляционный момент (ковариация)
По этим оценкам определяют эмпирический коэффициент корреляции:
который дает состоятельную, но смещенную оценку теоретического коэффициента корреляции r (смещение
, при n>50 составляет менее 1%).
Значимость r проверяется путем сравнения величины |r| ×
с его критическими значениями Н при заданной надежности r . При |r| ×
> H гипотеза о корреляционной связи подтверждается с надежностью r . Доверительные оценки r сложны и разработаны для случая нормального совместного распределения вероятностей величин X и У. Для приближенных доверительных оценок истинного значения коэффициента корреляции имеются номограммы[322]. Эмпирический коэффициент r может быть оценен оперативно графическим способом [44]. Доверительные интервалы для эмпирического коэффициента корреляции r, при малом количестве наблюдений n позволяет определить следующее преобразование, предложенное Р. Фишером:
Модель Земли
В настоящей работе предложена модель
строения Земли, базирующаяся на представлениях неэвклидовой геометрии. Показано
что, используя в качестве модельной поверхности фигуру тора удается правильно
описать многие географические особенности Зе ...
Рекреационные ресурсы Кольского полуострова
Рекреационные ресурсы
– это_____________________________
Цель данного исследования
– выявление рекреационных ресурсов Кольского полуострова и возможностей их
использования.
Описание темы, научность,
а ...

