ЯГФМ каротажа обладают физической однозначностью и во многих случаях решают задачу количественной оценки признака. По своей метрологической сущности они являются относительными и требуют специальных мер по градуировке, которая выполняется статистическим сравнением с кондиционным керном, с данными опробования околоствольного пространства скважин в горных выработках и с искусственными и естественными моделями - эталонами.
Зависимости между геофизическим параметром и определяемым признаком, в частности содержанием, можно рассматривать как функциональные с "шумами". Сравниваемые величины по своей природе не случайны, но измерены с некоторыми случайными и систематическими ошибками. Систематические ошибки в сравниваемых выборках должны быть учтены, а уровень случайных - сведен к разумному минимуму. Соответственно коэффициенты корреляции и корреляционные отношения должны быть близки к единице (не хуже 0,8). Лишь в этом случае градировочные зависимости могут служить для количественных определений. В каротаже практически используются одно- и двухкомпонентные зависимости. Первые - полностью или по частям аппроксимируются набором линейных функций или полиномами до 3-го порядка, вторые - решаются чаще номографически, а также с помощью эмпирических уравнений. Для оценки надежности однокомпонентной градировочной зависимости по среднему колебанию линии регрессии используется линейная связь. В общем содержание (С) и геофизический параметр (J) не случайны, но измерены с некоторыми случайным ошибками (систематические незначимы); x =С± s с; h = J± s J.
Выборочные значения случайных величин с математическими ожиданиями М(s J)=М (s с)=0. Связь между h и x можно представить в виде:
она обусловлена определенной функциональной зависимостью между неслучайными "структурными" компонентами J и С: J=а+в× с. Запишем приближенные равенства через относительные погрешности:
т.к J И С измеряются независимо;
Преобразуем связь между h и x :
, откуда:
(1.3)
Полученное выражение позволяет с достаточной точностью оценить средние колебания линии регрессии при линейной аппроксимации градировочной зависимости [1]. Значения величин, входящих в (1.3) определяются из известных соотношений:
При опробовании в естественном залегании вопрос правильности результатов имеет принципиальное значение (естественная боязнь систематических отклонений в подсчете запасов). Идеальных способов контроля правильности опробования практически не существует, т.к. при опробовании постоянно действует фактор неполноты информации из-за отсутствия "абсолютно правильных" эталонов, а процесс пробоотбора контролируется не полностью. Существует чисто эмпирическая иерархия "здравого смысла" в правильности результатов по пробам различной величины (валовые и групповые пробы считаются более правильными и представительными). Ведомственные руководства лимитируют лишь величину случайных и систематических погрешностей при аналитических исследованиях проб, а остальные операции, дающие как правило большие отклонения, лишь регламентируются технологически.
Новейшие экспедиции и их открытия
Среди современных нам ученых-первооткрывателей и
путешественников вряд ли можно назвать людей, имена которых были бы более
известны миллионам читателей, нежели имена Тура Хейердала и Жака-Ива Кусто.
Это объясняется и их личными человечес ...
Демография РТ
Население отдельных территорий меняется
также как следствие прибытия людей с других территорий (иммиграция) и выбытия
их на другие территории (эмиграция), вместе образующих миграцию, или
механическое движение. Наконец, изменение населения ...